Bioactive Double Network Hydrogel and Foam Composites from Lignocellulosic Building Blocks

Ngoc Huynh^{1,3} • Tia Lohtander-Piispa^{1,2}

- Tuomo Hjelt^{1,2} Suvi Ārola^{1,2} Martina Andberg Blomster^{1,2} Monika Österberg^{1,3}
 - 1. FinnCERES Materials Bioeconomy Cluster
 - 2. VTT Technical Research Centre of Finland Ltd., Tietotie 2, Espoo, Finland
 - 3. Aalto University, Department of Bioproducts and Biosystems, Vuorimiehentie 1, Espoo, Finland

INTRODUCTION

- Willow bark a potential reservoir of several bioactive phenolic compounds
- Combination of willow bark extract (WBE) and cellulosic materials to form double network (DN) hydrogels – a new class of functional and high performance materials using enzymatic approach
- Aalto and VTT's joint force under BioNETS project

RESULTS - DN HYDROGELS

- Significant increase in the strength of the hydrogel upon WBE introduction into CNF network and a slight increase after polymerization
- WBE addition has stronger effect on native CNF than TEMPO CNF

Figure 1. Storage modulus at 0.48 rad/s of samples of different WBE content.

PolymerIzed WBE Ized WBE Ize

Figure 2. Water immersion test. WBE reduces the swelling of TEMPO CNF and native CNF, even without polymerization with enzyme.

OBJECTIVES

- Develop purely bio-based and biodegradable composites from WBE and CNF
- Add value and functions to cellulosic foam with willow bark
- Explore the application prospects of DN hydrogels and dry foam composites in biomedical products or as bio-based functional packaging

RESULTS - DRY FOAM STUDY

- Foam composition: HefCel, methylcellulose, and carboxymethyl cellulose (CMC)
- Incorporation of WBE improves the mechanical properties of the dry foam and increases density slightly

Figure 3. The tensile strength and density of dry composite foams.

CONTACT

Ngoc Huynh ngoc.huynh@aalto.fi

Tia Lohtander-Piispa tia.lohtander@vtt.fi

SUMMARY

- WBE increases the strength of CNF hydrogels and dried foam structures
- WBE inhibits swelling of nanocellulose in water
- WBE interacts differently with native CNF and with TEMPO CNF
- WBE shows great potential as a functionalization agent for foam packaging applications

