3D printing and properties of cellulose nanofibrils hydrogels reinforced with tragacanth gum Roberta Teixeira Polez¹, Maria Morits¹, Christopher Jonkergouw^{1,} Juan José Valle-Delgado¹, Markus B. Linder¹, Orlando J. Rojas^{1,2}, Monika Österberg¹* ¹ Bioproduct Chemistry Group, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland ² Biobased Colloids and Materials Group, Department of Chemistry, University of British Columbia, Canada #### Introduction #### **Objectives:** - To develop 3D printable CNF-based hydrogels - To tune hydrogel properties with TG and LNP - To explore application of these biomaterials in tissue engineering scaffolds ## **Experimental and Results** ## Hydrogel Preparation and Microstructure ## Hydrogel Rheology ## Hydrogel Swelling T **TG75** Swelling increased when TG content increased ## Cell Viability **TG25** Swelling (wt%) TG00 - No toxicity - Proliferation of cells within the hydrogel ### Conclusions Potential application of plantbased materials in tissue engineering