

3D printing and properties of cellulose nanofibrils hydrogels reinforced with tragacanth gum

Roberta Teixeira Polez¹, Maria Morits¹, Christopher Jonkergouw^{1,}
Juan José Valle-Delgado¹, Markus B. Linder¹, Orlando J. Rojas^{1,2}, Monika Österberg¹*

¹ Bioproduct Chemistry Group, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland
² Biobased Colloids and Materials Group, Department of Chemistry, University of British Columbia, Canada

Introduction

Objectives:

- To develop 3D printable
 CNF-based hydrogels
- To tune hydrogel
 properties with TG and LNP
- To explore application of these biomaterials in tissue engineering scaffolds

Experimental and Results

Hydrogel Preparation and Microstructure

Hydrogel Rheology

Hydrogel Swelling T

TG75

Swelling increased when TG content increased

Cell Viability

TG25

Swelling (wt%)

TG00

- No toxicity
- Proliferation of cells within the hydrogel

Conclusions

 Potential application of plantbased materials in tissue engineering